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Abstract—Nano quadcopters are small, agile, and cheap 

platforms well suited for deployment in narrow, cluttered 
environments. Due to their limited payload, these vehicles are 
highly constrained in computational power, making conventional 
vision-based navigation methods impractical for implementation. 
In this work, we present FlowDep, an efficient and optical flow-
based algorithm for depth estimation. We draw inspiration from 
the low-resolution but efficient motion-detection mechanisms in 
insects. We successfully demonstrate the capabilities of the 
FlowDep by deploying it on a Bitcraze Crazyflie, a ~30 g nano 
quadcopter for obstacle avoidance with a single monocular 
camera. Additionally, we demonstrate the feasibility of the 
FlowDep algorithm in Gazebo simulation for obstacle avoidance 
in indoor and outdoor test environments.  

Keywords—depth estimation, obstacle avoidance, optical flow, 
micro aerial vehicle, nano quadcopters 

I. INTRODUCTION 
Safe and reliable navigation of autonomous aerial systems in 

narrow, cluttered, GPS-denied, and unknown environments is 
one of the main open challenges in the field of robotics. Because 
of their small size and agility, micro air vehicles (MAVs) are 
optimal for this task [1], [2]. Nano quadcopters are a variety of 
MAVs that are characterized by minimal weight (typically 
below the range of ~100 g) and size (typically with rotor to rotor 
distance of 10 cm).  Despite of small size, these nano 
quadcopters have shown impressive performance on tasks such 
as exploration [3] and gas source seeking [4]. 

The traditional approach of passive depth estimation is based 
on stereo vision, which requires two precisely calibrated 
cameras, and the depth information is calculated based on 
disparity. However, this method is limited by the higher cost 
(two cameras) and the physical separation between the two 
cameras. On a nano quadcopter, the rotor-to-rotor distance is at 
most on the order of ~ 10 cm and hence offers a maximal 
distance range of estimation to a few meters for stereo vision. In 
this work, we turn our attention to optical flow, one of the most 
important monocular visual cues for navigation. Until now, it 
has been used for high payload capacity [5,6]. Also, a bio-
inspired method [7-11]. Also, the field of monocular optical 
estimation has shifted toward deep learning [12-24], and there is 
limited work on obstacle avoidance based on optical flow 
implemented on nano quadcopters [25]. De Croon’s group has 
developed NanoFlowNet based on real-time dense optical flow 
on a nano quadcopter using a lightweight convolution neural 
network. The neural network is trained with a dataset with 
known optical flow ground truth and real-time inference on the 
ultralow-power GAP8 multi-core microprocessor on the 
Bitcraze AI-deck. Although not based on optical flow, in related 
work, very impressive flight speed is achieved based on depth 
estimation is achieved based on a novel millimeter form factor 
64 pixels multizone time-of-flight (ToF) sensor [26]. The 
autonomous nanosize drone reaches 100% reliability at 0.5 m/s 
in a generic and previously unexplored indoor environment. 

Previously, we have reported both the theoretical details of 
the FlowDep algorithm and the implementation of FlowDep on 
a ground mini-vehicle based on Raspberry Pi 4 Model B with 
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the low resolution (320 pixel x 240 pixel) image data from 
Arducam camera OV9782 as the computation platform [27]. It 
is not clear whether or not the idea of FlowDep can be 
implemented on aerial vehicles such as nano quadcopters. In this 
work, we present the implementation of FlowDep on a nano 
quadcopter and demonstrate its capability for obstacle avoidance. 
Additionally, as an independent validation, we also implement 
the FlowDep algorithm in a simulation environment in Gazebo 
to prove the general applicability of the FlowDep algorithm. It 
also allows us to freely vary the critical parameters such as flight 
velocity in the simulated flight condition without conducting 
potentially abusive experimentation on actual micro aerial 
vehicles and also relieves us from any noisy perturbation from 
sensors or environmental disturbance. 

 As a summary, the main processing step of the FlowDep 
algorithm is shown in Fig. 1. The algorithm assumes an infinite 
wall on the x-y plane in front of the camera and computes a 
“predicted” optical flow for every point on the wall based on the 
movement of the camera. The depth information of an observed 
object can be extracted by comparing the predicted and the 
observed optical flows.  FlowDep takes the optical flow 
(computed using the Dense Inverse Search method [28]) and the 
motion signals of the micro aerial vehicle as the input. The 
motion signals contain rotation components from the onboard 
inertial measurement unit and translation components from the 
estimated horizontal velocity. The former is used to perform de-
rotation for the observed optical flow, and the translation 
components are used to generate the predicted optical flow.  

Similar to many structure-from-motion methods, FlowDep 
can operate as a keyframe-based algorithm [29] by selecting 
historical frames as keyframes to adjust the effective depth range. 
By leveraging the odometry provided by the onboard IMU and 
the downward Flow-deck, the system obtains the relative camera 
pose with an absolute scale. This information allows us to set 
criteria for selecting a previous frame for optical flow 
computation. One approach is to assume a relatively stable 
flying speed and reduce the camera’s frame rate, effectively 
spacing out the frames used for depth estimation. Alternatively, 
we can select a frame based on a predefined absolute distance 
from the current frame. Both strategies enable FlowDep to 
dynamically adjust the depth range, ensuring more accurate 
depth estimation in varying operational conditions. 

 

 
Fig. 1. The main processing steps of FlowDep.  

II. METHODS 

A. Implementation of the algorithm on the nano quadcopter 
We deploy the proposed FlowDep algorithm on a Crazyflie 

2.x equipped with the AI-deck and the Flow-deck for the task of 
vision-based obstacle avoidance. We use the AI-deck to capture 
images with the front-facing camera and to run processing on 
laptop CPUs. The downward-facing optical Flow-deck is used 
to provide the velocity data in the FlowDep algorithm. (The 
Flow-deck is based on PMW3901, an optical flow ASIC that 
computes the flow internally and provides a difference in pixels 
between each frame.) To obtain reliable estimation of the flight 
velocity Vx and Vy, we have placed a well-designed texture 
carpet composed of the scene of forests from the satellite images 
of the central park in New York. The total flight platform weighs 
in at 34 g. See Fig. 2 for a picture of the platform.  The AI-deck 
of the Crazyflie provides image streaming via Wi-Fi and uses 
the implemented FlowDep algorithm laptop CPU for depth 
estimation and obstacle avoidance decision-making. The high-
level flight control command is computed with the control 
strategy and sent back to the nano quadcopter. Fig. 2b provides 
a summary of the fusion of the image, inertial measurement unit, 
and position data in the FlowDep algorithm to give the depth 
estimation. 

B. Test environments 
We compose indoor environments for obstacle avoidance. A 

cluttered environment is constructed with obstacles such as 
textured poles placed inside. In Fig. 3a, a single rectangular 
pillar with a brick wall is placed. In Fig. 3b, in a representative 
environment, the textured poles are made of two cardboard 
cylinders wrapped with synthetic plants. The environment is 
enclosed with textured panels to provide the “predicted” optical 
flow of the background. The ground carpet consists of forest 
texture optimized for stable and smooth flight (Fig. 3c). The 
carpet also provides texture for the Flow-deck of the down-
facing camera to measure horizontal velocity.  

 
Fig. 2. Experiment setup (a) The AI-deck of the Crazyflie provides image 
streaming via Wi-Fi and uses the implemented FlowDep algorithm on the 

laptop CPU. (b) Summary of the fusion of image, inertial measurement unit, 
and position data in FlowDep algorithm to give the depth estimation. 



 
Fig. 3. Test environments (a) Single obstacle test environment with a 

rectangular pole. (b) Multiple obstacle test environment with two textured 
cylinders decorated with synthetic plants. (c) The carpet used on the ground of 

test environments. 

C. Control strategy for obstacle avoidance 
We adopt a simple control strategy tailored to micro aerial 

vehicles (MAVs). The core of our control strategy is from the 
reference[30]. The image obtained from a monocular camera is 
first split into two horizontal and vertical half-planes. The 
desired heading direction and pitch rate are then determined by 
comparing the sum of optical flows between half-planes 
horizontally and vertically, respectively. Through testing with 
both single and multiple obstacles, the FlowDep algorithm 
demonstrated strong performance in obstacle avoidance. 

D. Simulation in Gazebo environment 
The simulation is done on a laptop computer with Intel Core 

i9-12900HX and 16 GB memory. The computation is also 
accelerated with GPU (Nvidia GeForce RTX 4080). The Robot 
Operating System (ROS) is used as the operating system under 
Ubuntu 20.04.6 LTS. The simulation uses an open-source 
software called PX4 Software-In-The-Loop (SITL) as the flight 
control software [31]. We chose Bayland from Gazebo as the 
outdoor test environment (Fig. 4). This scene consists of arrays 
of trees with rich textures ideal for optical flow-based algorithms. 
We also constructed an indoor environment that closely mimics 
our actual flight environment for the nano quadcopter (Fig. 5). 
Before we simulate FlowDep, we carry out benchmark flights 
such as circular flights to make sure the inertial measurement 
unit (IMU) is output as a sanity check. 

 
Fig. 4. Bayland outdoor environment in Gazebo 

 
Fig. 5.  Indoor environment in Gazebo 

 
Fig. 6 (a) Raw image (b) Depth estimation (c) Optical flow (d) De-rotated 

optical flow 

 
Fig. 7. Obstacle avoidance experiment. The unit of the coordinate is in meters.  

 
Fig. 8. Multiple obstacle avoidance experiment. The unit of the coordinate is 

in meters.  

III. RESULTS 

A. Single and multiple obstacle avoidance of the nano 
quadcopter  
Fig. 6 shows the depth estimation from a greyscale input 

image and intermediate results of optical flow and de-rotated 
optical flow. Fig. 7 shows obstacle avoidance of a single 
obstacle of a square pillar with brick wallpaper as the texture. 
The blue curve is the flight trajectory extracted from video from 
an external web camera. The forward velocity is 0.15 m/s and 



the FlowDep runs at 7 fps on the laptop CPUs. Similarly, Fig. 8 
shows the multiple obstacle avoidance at a forward velocity of 
0.2 m/s.  

We have currently explored the feasibility of implementing 
FlowDep directly on the Bitcraze AI-deck. Utilizing the GAP8 
SDK—which supports the RISC-V GNU toolchain—we can 
cross-compile C code to run on the AI-deck. Our preliminary 
implementation, using a pure-C sparse forward-compositional 
Lucas-Kanade optical flow method, has achieved onboard 
processing speeds of approximately 6–7 FPS. Moreover, 
theoretical improvements—such as switching to an inverse-
compositional Lucas-Kanade approach [32] and employing a 
less computationally intensive pixel interpolation method—
could potentially accelerate the algorithm by up to 4×. Given 
that these findings are preliminary and further validation is 
necessary, we have outlined this direction as part of our future 
work. 

B. Obstacle avoidance on simulation on Gazebo  
The raw image from the simulation is used to calculate the 

optical flow and the simulated data from the inertial 
measurement unit is fused with image data as input of the 
FlowDep algorithm. Fig. 9 shows the representative depth 
estimation as compared to the depth data from the simulated 
stereo camera in Gazebo.  The obstacles consist of an array of 
threes with rich textures. We choose the forward velocity as the 
critical parameter to vary but fix the control strategy. For each 
forward velocity, we slightly vary the incident angle to produce 
perturbed flight conditions. We conduct 10 trials for each 
forward velocity. The FlowDep algorithm works for a certain 
range of velocity even for multiple obstacle avoidance (Fig. 10). 
At low velocity v= 0.8 m/s, the drone runs into the forest and yet 
no collision occurs. For high-velocity flight v= 3.2 m/s, around 
60 % of the trials result in collision. In general, higher forward 
flight velocity results in high collision probability is 
understandable as the drone does not have enough time to make 
inferences with a fixed control strategy. Improvement in 
collision probability is possible if we allow the control strategy 
to vary to adapt to high flight velocity. Similarly, the FlowDep 
algorithm works for obstacle avoidance in the indoor 
environment (Fig. 11). 

C. Robustness to Environmental Variability 
In our current implementation, FlowDep relies on accurate 

optical flow estimation, which can be challenging in 
environments with limited textures. As is well known, missing 
textures often lead to less reliable optical flow. To address this, 
we already employ a pyramidal implementation [33] of optical 
flow, which helps mitigate scale issues. For future work, we plan 
to further enhance robustness by incorporating additional 
contextual information and approach this problem via two 
promising avenues.  First, spatial context via CNNs: Leveraging 
convolutional neural networks [25] could help the algorithm 
infer motion in low-texture areas by understanding the broader 
spatial context. Second, temporal context via Bayesian Filtering: 
Incorporating Bayesian filtering might not only refine the 
optical flow estimates over time but also aid in detecting 
dynamic obstacles. However, further investigation is required to 
fully assess its benefits within the FlowDep framework. 

IV. CONCLUSION 
In this work, we introduced a lightweight architecture to 

implement FlowDep for depth estimation. We implemented 
FlowDep in a real-world obstacle avoidance application a 
Bitcraze Crazyflie nano quadcopter. In simulation, FlowDep can 
assist drones in maintaining stable flight and avoiding collisions 
with obstacles in both complex outdoor terrains like forests and 
indoor environments. The application of the FlowDep algorithm 
demonstrates the immense potential of bio-inspired systems in 
robot navigation and also suggests a new direction for future 
low-cost robotic vision systems. 

  

 
Fig. 9. Depth estimation from a representative Bayland scenery consists of 

multiple trees. (a) Raw image from the test environment (b) Depth estimation 
(c) Ground truth of the depth from the simulated stereo camera in Gazebo. 

 

Fig. 10. The trajectory of multiple obstacle avoidance simulations at different 
forward velocities for the outdoor environment (a) 0.8 m/s (b) 1.6m/s (c) 3.2 m/s 

 
Fig. 11. Trajectory of drone for obstacle avoidance in indoor environment. 
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